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Abstract
A critical and challenging aspect for the study of Cultural Heritage (CH) assets is related to the characterization of the materials
that compose them and to the variation of these materials with time. In this paper, we exploit a realistic dataset of artificially
aged metallic samples treated with different coatings commonly used for artworks’ protection in order to evaluate different
approaches to extract material features from high-resolution depth maps. In particular, we estimated, on microprofilometric
surface acquisitions of the samples, performed at different aging steps, standard roughness descriptors used in materials science
as well as classical and recent image texture descriptors. We analyzed the ability of the features to discriminate different aging
steps and performed supervised classification tests showing the feasibility of a texture-based aging analysis and the effectiveness
of coatings in reducing the surfaces’ change with time.

CCS Concepts
•Computing methodologies → Machine learning approaches; Neural networks; •Applied computing → Arts and humani-
ties; •General and reference → Metrics;

1. Introduction

An important visual computing task related to Cultural Heritage
(CH) objects’ study and conservation is the characterization of sur-
faces at microscopic level and the analysis of how their shapes
change over time.

Microprofilometric probes [SB00] can reconstruct surfaces with
a micrometric resolution, and the characteristics of the measured
surface patterns can give important information about the physical,
chemical properties and appearance of the material. Surface metrol-
ogy provides well established tools to quantitatively analyze rough-
ness patterns, by using methodologies and parameters described
in ISO standards related to profile analysis and areal characteri-
zation [Bla13].

These measurements have been seldom evaluated in comparative
works with the purpose of classifying specific materials of interest.
This task, however, is particularly interesting in the CH domain,
where the analysis of material properties and their evolution due
to both time and different environmental conditions is particularly
useful for conservators.

The problem is non-trivial as many factors influence the texture
pattern of the surface depth at different scales.

In this paper, we present results of tests aimed at using surface
metrology tools as well as different image processing techniques

to characterize and classify, according to aging, samples of bronze
and silver alloys typically used in artworks.

Our testbed consists of Cultural Heritage material samples arti-
ficially aged provided by an Italian art conservation and restoration
laboratory.

2. Related Work

Several descriptors are already used in material science to charac-
terize surface roughness. Profile parameters are usually exploited
in material science to characterize roughness from linear measure-
ments. To deal with surface capture, aerial parameters are described
in the ISO25178 standard to characterize materials [Bla13] or to
analyze the relevance of parameters during surface-changing pro-
cesses [DKB14, VGBEM∗10].

In the image processing domain, there are many other methods
commonly used to characterize statistical properties of a signal reg-
ularly sampled in 2D, i.e. the texture pattern [TJ∗93]. In principle,
all those descriptors can be applied as well for depth map descrip-
tion. A survey of specific issues of texture analysis methods for ma-
terial science is presented in [Bun13]. Examples of different texture
characterization methods not included in surface metrology proto-
cols are second order statistics like co-occurrence matrices [Har79]
describing joint variations of gray-scale at selected distances. Local
binary patterns [GZZ10] are other popular visual descriptors mea-
suring robust statistics of pixel neighborhoods. Another classical
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texture analysis method, not included in surface roughness analysis
protocols is the characterization of patch properties using statistics
of filter banks’ output [VZ02].

Recent advances in texture analysis revealed that other meth-
ods based on learned representations of local patterns can out-
perform the classical ones for classification, using joint distribu-
tion of neighboring pixels [VZ03], advanced key-point descriptors
like SIFT coupled with encoders like Fisher Vectors, or feature ex-
traction methods based on Convolutional Neural Networks (CNN)
training [CMK∗14, CMKV16].

Feature extraction refers to using a pre-trained deep neural net-
work and activate it in order to compute features for a new dataset
at a certain layer in the architecture of the network. The choice
of the activation layer is mainly a choice of design preference,
even though there is a certain dependency between the similarity
of the target data and the data that was used to train the pre-trained
network: the more they are similar, deeper layers in the architec-
ture can be chosen. This is mainly due to the fact that early layers
learn low-level features (edges, blobs, color), while last layers learn
task-specific, high-level features. Two notable works that imple-
mented the reuse of pretrained CNNs for texture analysis are pre-
sented in [CMK∗14] and [CMKV16]. In the former one, they load
the AlexNet model, while in latter they use the VGG models. The
AlexNet network (8 layer architecture) was trained on a subset of
the ImageNet database (more than a million images) for the Large-
Scale Visual Recognition Challenge [RDS∗15] (ILSVRC 2012)
and can classify images into 1000 object categories. Hence, the
model has learned rich feature representations for a wide range of
images. Meanwhile, the VGG models have won the ILSVRC 2014
and are designed according to a deeper architecture (16 and 19 lay-
ers).

To our knowledge, there is no previous work in the literature that
tested both ISO descriptors and texture analysis methods together
and compared their ability to discriminate the roughness of differ-
ent materials employed in CH objects.

It would be therefore extremely useful to understand how spe-
cific standard parameters and texture analysis methods can be use-
ful for this specific task.

For this reason we performed a study aimed at the evaluation
of different roughness characterization methods on artificially aged
metallic objects.

3. Study design

This research features metallic samples artificially degraded in an
aging chamber. The samples were created by a conservation labo-
ratory involved in a vast research project aimed at the characteriza-
tion of artworks. The samples are made of silver alloys and bronze
alloys. Each dataset has a reference plate left uncoated and the rest
treated with distinct coatings (one different coating per plate) typi-
cally used in CH to prevent or at least slow down the aging process.
The appearance of the uncoated samples between the different ag-
ing steps is shown in Figure 1. It is possible to see that evident
changes appear in the material at a macroscopic level, however we
are interested in using the microsurface analysis to find if some

Figure 1: The uncoated silver sample (top) at aging steps t0, t1, t2,
t3 and the uncoated bronze sample (bottom) at t0, t1, t2.

consistent changes in the surface depth properties can be measured
with time evolution.

The silver plates have the dimensions of approximately
7×2.5 cm, with a thickness of 0.1 cm, and they were cut from a
sheet of sterling silver (alloy of silver 92.5% and copper 7.5%), un-
dergoing additional polishing and brushing steps. The coatings that
have been applied to the silver plates for preventing the fast aging
effects are those widely used by the conservator’s community and
are based on acrylic resin and wax.

The bronze samples were created as an alloy of 90% copper and
10% tin, because this is the most representative mix employed in
arts, dating as far as the ancient times and common as well for
the Renaissance period. Each bronze coupon has a dimension of
8×5 cm and a thickness of 0.4 cm. The coatings applied to the
bronze samples, as simple, blended or layered combinations, are
those most encountered in the conservation community: acrylic
resin (incral44) and soter wax. The coating should protect against
corrosion that is the principal aging danger to which the bronze al-
loys kept in outdoor environments are susceptible to. Considering
this, the artificial aging of the bronzes was performed by simulat-
ing the outdoor conditions in a test chamber. Surface acquisition for
our study has been carried out with a microprofilometer based on
conoscopic holography [DGM∗17, GMD17]. The spatial sampling
of the original acquisitions was 0.025 mm for the silver coupons
and, respectively, 0.05 mm for the bronze coupons.

Our study is aimed at verifying the possibility of characteriz-
ing modifications in the material roughness at a small scale using
both standard roughness descriptors and other texture characteri-
zation methods used in the image processing domain. To test this
idea, we processed depth maps cropping small patches (with real
sizes 0.5 cm for both silver and bronze samples) and, after local
background surface subtraction (planar surface), we independently
estimated on each patch ISO roughness descriptors and texture fea-
tures. The procedure has been repeated for uncoated and coated
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samples at the different time steps.To ensure a fair comparison, we
performed an accurate image registration using manually checked
control points to align the depth images of the different time steps
in the same reference grid.

The outcome of the procedure was, for each material, a set of
depth texture patches labeled with a time step, as displayed in Fig-
ure 2. On these patches, we computed ISO areal roughness pa-
rameters and evaluated their capacity to distinguish between aging
steps and we performed time classification experiments with ISO
descriptors, classical image texture descriptors and CNN-based de-
scriptors. Our pipeline, as presented in Figure 3 concludes with
feeding the various descriptors into multiple classifiers and evalu-
ating the accuracy of the aging classification for each of the studied
materials.

3.1. ISO Roughness descriptors

We estimated ISO surface descriptors on patches using Moun-
tainsMap http://www.digitalsurf.com, a professional
software tool widely applied in the surface metrology domain.
Areal roughness parameter features from the ISO25178 standard
[Bla13] are divided in groups (see Table 1) related to height statis-
tics (e.g. Sq, root mean square height of the surface Ssk, Sku skew-
ness and kurtosis of height distribution), to spatial periodicity (e.g.
Sal fastest decay auto-correlation rate, Str, texture aspect ratio of
the surface, Std texture direction of the surface), to the spatial shape
of the data (Sdq root mean square gradient of the surface, Sdr de-
veloped area ratio), to the shape of the regions resulting from a
watershed segmentation (S10z, ten point height), to the features of
the material ratio (Abbott-Firestone) bearing curve (Spk reduced
peak height, Sk core roughness depth, Smr1 upper bearing area, Smr2
lower bearing area). finally,

To understand which are the roughness descriptors most suitable
to characterize material aging we used the approach proposed in
[DKB14], e.g. we performed the analysis of variances (ANOVA).
From the 3 groups of patches acquired at different time steps we
estimated the F-score - the ratio between the variance of the means
and the average of the sample variances for each group, which is
an estimate of the overall population variance (assuming all groups
have equal variances). Higher values of this score correspond to
larger significance of the parameter variations across time steps.

3.2. Classical texture descriptors

The set of ISO descriptors is quite rich, but, actually does not in-
clude the most widely classical texture descriptors. There is a vari-
ety of 2D texture pattern characterization methods in the literature,
and it is quite hard to tell which is the best for the characterization
of a specific classes of patterns, as there are actually many different
types of texture characterization with different invariance proper-
ties [LCF∗18].

For fine-grained texture characterization, popular choices not in-
cluded in the ISO sets are second order statistics, like gray co-
occurrence matrix (COOM), specialized filter banks, e.g. MR8
[VZ03], local binary pattern (LBP) [OPM02].

Gray Level Co-occurrence Matrices sum the number of times

Table 1: 3D Roughness descriptors according to the ISO 25178
standard computed in this paper.

3D Roughness descriptors defined by ISO 25178
Height Parameters
Sq µm Root-mean-square height
Ssk - Skewness
Sku - Kurtosis
Sp µm Maximum peak height
Sv µm Maximum pit height
Sz µm Maximum height
Sa µm Arithmetic mean height
Functional Parameters
Smr % Areal material ratio
Smc µm Inverse areal material ratio
Sxp µm Extreme peak height
Spatial Parameters
Sal mm Autocorrelation length
Str - Texture-aspect ratio
Std ◦ Texture direction
Hybrid Parameters
Sdq - Root-mean-square gradient
Sdr % Developed interfacial area ratio
Functional Parameters (Volume)
Vm mm3/mm2 Material volume
Vv mm3/mm2 Void volume
Vmp mm3/mm2 Peak material volume
Vmc mm3/mm2 Core material volume
Vvc mm3/mm2 Core void volume
Vvv mm3/mm2 Pit void volume
Feature Parameters
Spd 1/mm2 Density of peaks
Spc 1/mm Arithmetic mean peak curvature
S10z µm Ten point height
S5p µm Five point peak height
S5v µm Five point pit height
Sda mm2 Mean dale area
Sha mm2 Mean hill area
Sdv mm3 Mean dale volume
Shv mm3 Mean hill volume
Functional Parameters (Stratified surfaces)
Sk µm Core roughness depth
Spk µm Reduced summit height
Svk µm Reduced valley depth
Smr1 % Upper bearing area
Smr2 % Lower bearing area
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Figure 2: Depth map patch from the uncoated silver sample, displayed at different aging labels (in order from left to right): t0, t1, t2, t3. The
roughness changes from visible scratches at t0 to the apparition of new high-depth elements at t1 and finally, shifts to the formation of patina
as it approaches t3.

Figure 3: Our workflow for aging classification of cultural heritage materials based on multiple roughness and texture descriptors.

that a given pixel pair is found adjacent in the original gray-scale
image. Based on this characterization of the spatial relationship be-
tween pixels, several statistics can be computed. In our application,
we mapped the depth range of the whole set of patches within 32
gray levels, assuming isotropic texture and averaging x and y (hor-
izontal and vertical) displacement vectors of length 1 and 3 pixels,
estimating at the two scales contrast, correlation and energy fea-
tures.These three features are estimated (contrast, correlation, en-
ergy), building a 6 component descriptor vector.

Local Binary Patterns encode the order relationship between a
pixel and a given neighborhood. For each pixel, a binary array with
a number of components equal to the size of the neighbourhood is
computed, then histograms characterize the frequency of these val-
ues and are finally concatenated into a feature vector for the entire
image. For our data, LBP features were extracted with rotational
invariance [OPM02] with different values of radius (1,3) and circle
sampling (8,16 points).

A simple and effective texture description may be obtained with
the response of filter banks. The Maximum Response filter bank
(MR8), described in [VZ02] characterizes patches with average and
standard deviation of the maximal output of oriented filters as well
as average and standard deviations of isotropically filtered values.

3.3. Texture descriptors based on pre-trained CNN

We evaluated state of the art CNN-based approaches by using
features obtained from pre-trained deep networks as suggested in
[CMK∗14, CMKV16]. We tried different CNN-based texture la-
belling methods proposed in the cited papers: the penultimate fully
connected layer of the pre-trained AlexNet architecture (FC-CNN)

and, respectively, the convolutional layer from the pre-trained net-
work VGG19, pooled into a Fisher vector (FV-CNN) representa-
tion. Due to the high dimensionality of the latter, amounting to
an array size of 65k and computational limitations, the LDC and
NEURC classifiers could not be tested for FV-CNN. Moreover, the
number of patches per sample sums up to an average of approxi-
mately 100, which impeded a CNN fine-tuning approach.

3.4. Supervised labelling methods

Using the different kind of patch descriptors, we trained and tested
different supervised classification methods. The classifiers cover
different approaches including generative, discriminative, paramet-
ric and non parametric methods exploiting the implementations
provided in the PRTools 5 Matlab package [dRTL∗17] and in the
LIBSVM library [CL11].

In our tests we compare a simple linear naive Bayesian classifier
(ldc), linear support vector machine (libsvc), k-nearest neighbor
(knnc), nonlinear Parzen classifier (parzenc) and non-linear feed-
forward neural network with one hidden layer (neurc).

3.5. Patch classification tests

Using the extracted roughness descriptors on the patches’ collec-
tions, we performed, for the different materials, a 10-fold cross-
validation test to estimate accuracy in time label estimation with
the different classifiers previously cited. In detail, we estimated the
average classification error of 10 tests where we took 90% of the
patches of each class as training set and the rest as test set. It is
worth mentioning that for the classification based on the classi-
cal image texture descriptors and CNN features, data augmentation
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(flip, rotation 90 degrees, rotation 180 degrees) was used to increase
the collection of patches. On the contrary, since the ISO descriptors
are rotation-invariant, there was no benefit in implementing data
augmentation in this case.

3.6. Effects of coatings on age characterization

Another use of the microprofilometric measurements can be as well
to evaluate how coatings influence the roughness. Coated surfaces
have been captured and similarly characterized in small patches
with ISO areal parameters and texture descriptors; differences with
uncoated samples and evolution of parameters with time has been
analyzed.

Figure 4: Bar charts showing the ranking of the first 10 rough-
ness descriptors based on the F-score (x-axis) computed with the
ANOVA analysis. Top: Ranking for the uncoated silver sample. Bot-
tom: Ranking for the uncoated bronze sample.

4. Results

4.1. Best ISO descriptors for aging discrimination

To begin with, the analysis of ISO descriptors reveals that both type
of surfaces have the most relevant roughness parameter (accord-
ing to the F-score) belonging to the Functional parameters category
recommended for stratifies surfaces, as can be noticed in 4. Hence,
the changes for both uncoated silver and uncoated bronze seem to
be reasonably quantified by the segmentation of local differences.
Probably this is because the material bearing ratios characterize
well stratified surfaces. Thus, the reduced peaks are the areas that
are removed by initial abrasion in a surface and Spk represents the
average height of the reduced peaks. In addition, Smr1 describes the

areal material ratio that divides the reduced peaks from the core sur-
face, while Smr2 characterizes the areal material ratio that divides
the reduced valleys from the core surface. To analyze the signif-
icance of the parameters to discriminate between different aging
steps (t0, t1, t2, t3), we plotted the distribution of the most relevant
descriptor for the uncoated silver and uncoated bronze samples, as
well as for their coated variations, with box-and-whiskers plots in
Figure 5. The medians of the patches corresponding to the three
time steps are represented by the red line. These plots point out
interesting behaviors.

First of all, as expected, on the uncoated silver samples, we mea-
sure significant differences for the most relevant roughness values
at different times, that can actually be used to distinguish between
the small patches at different time steps.

This is evident looking at the top left plot in Figure 5. Variations
of Spk are clearly statistically significant, especially comparing t0
and t1 (this is visible from the lack of overlap between the interquar-
tile ranges represented by the blue rectangles). After t1, differences
are then less relevant with time, even if a decreasing trend is clear.
Also the inter-sample variability of the roughness parameters is de-
creasing for the uncoated sample (see quartile boxes), suggesting
that formation of patina tends to even the roughness and flatten the
sample.

Looking at the evolution of the same parameter in the coated
silver samples, however, it is possible to see that the behavior is
not perpetuated and there are also large variations of the roughness
descriptors. For C1 and C2, the medians seem to stay constant with
aging as opposed to C3, where there is a dramatic change between
t0 and t3, almost as in the case of the uncoated silver sample. This
behavior suggests that, according to the Spk ISO descriptor, C1 and
C2 are more protective against aging than C3 for the silver material.
The behavior of the variances is, however, quite strange, and this
may be due to the irregular distribution of the coating creating local
differences that may then differently evolve with aging.

The differences are less discernible in the case of bronze sam-
ples. Also in this case the most aging-discriminant feature (Smr1
changes significantly after the first time step for the uncoated sam-
ple, but then it seems constant. Differently from the silver, it ap-
pears quite difficult here to characterize age-related changes in
roughness from ISO descriptors trends.

It can be therefore interesting to search for other possible texture
descriptors that may characterize aging at a smaller scale. To inves-
tigate this, we compared several texture classification methods on
the task of predicting correct time label from examples (extracted
on the same sample).

4.2. Classification outcomes

Table 2 shows the classification accuracy obtained in the crossval-
idation tests where we predict time labels of a subset of patches
given the rest of the set as examples. As expected from the fea-
tures behaviors previously described, all ISO descriptors provide
quite poor results, even if it is possible to see that the accuracy is
clearly higher on the uncoated materials, as expected. This should
mean that the classification results are not due to over-fitting, but
measure a real effect.
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Figure 5: Box plots showing the time evolution of the ISO feature with the highest F-score for time discrimination. Top: The Spk feature for
silver patches with different coatings: uncoated, one layer of acrylic, two layers of acrylic, one layer of acrylic + one layer of wax. Bottom:
The Smr1 feature for the bronze patches with different coatings: uncoated, incral44, incral44 + wax, wax + incral44 + wax.

ISO
Image texture

descriptors
CNN-based

texture descriptors
symbol coating classifier all iso coom lbp mr8 fv-cnn fc-cnn

LDC 0.53 0.34 0.18 0.14 - 0.75
KNNC 0.38 0.37 0.41 0.25 0.18 0.09

LIBSVC 0.39 0.49 0.39 0.13 0.13 0.06
52 patches NEURC 0.42 0.19 0.12 0.16 - 0.59

UC uncoated

PARZENC 0.39 0.39 0.69 0.23 0.75 0.75
LDC 0.66 0.49 0.17 0.32 - 0.75

KNNC 0.55 0.51 0.43 0.46 0.37 0.36
LIBSVC 0.71 0.61 0.51 0.35 0.26 0.31

48 patches NEURC 0.60 0.40 0.35 0.37 - 0.62
C1 1c acrylic

PARZENC 0.58 0.51 0.65 0.64 0.75 0.75
LDC 0.75 0.59 0.27 0.51 - 0.75

KNNC 0.73 0.55 0.60 0.51 0.46 0.58
LIBSVC 0.67 0.61 0.59 0.57 0.34 0.47

46 patches NEURC 0.76 0.48 0.51 0.60 - 0.67
C2 2c acrylic

PARZENC 0.71 0.57 0.69 0.56 0.75 0.75
LDC 0.62 0.67 0.41 0.41 - 0.75

KNNC 0.59 0.51 0.52 0.49 0.45 0.45
LIBSVC 0.64 0.65 0.55 0.42 0.34 0.33

44 patches NEURC 0.59 0.56 0.55 0.47 - 0.70
C3 1c acrylic + wax overlay

PARZENC 0.61 0.52 0.59 0.51 0.75 0.75

Table 2: Error of cross-validated (10-folds) classifiers (from top to bottom: naive Bayes, k-nearest neighbour, support vector machine,
neural network and parzen classifier) for aging prediction,performed on silver samples with different coatings and based on classical texture
descriptors, neural net features and all the roughness parameters.
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ISO
Image texture

descriptors
CNN-based

texture descriptors
symbol coating classifier all iso coom lbp mr8 fv-cnn fc-cnn

LDC 0.47 0.27 0.33 0.29 - 0.67
KNNC 0.48 0.36 0.53 0.46 0.33 0.38

LIBSVC 0.49 0.41 0.39 0.29 0.21 0.32
127 patches NEURC 0.52 0.33 0.35 0.31 - 0.60

UC uncoated

PARZENC 0.49 0.40 0.59 0.46 0.67 0.67
LDC 0.59 0.51 0.51 0.52 - 0.67

KNNC 0.54 0.53 0.55 0.50 0.48 0.50
LIBSVC 0.59 0.57 0.51 0.52 0.39 0.48

116 patches NEURC 0.56 0.48 0.53 0.48 - 0.60
C1 incral44

PARZENC 0.58 0.55 0.66 0.51 0.67 0.67
LDC 0.60 0.31 0.29 0.33 - 0.67

KNNC 0.60 0.43 0.55 0.45 0.35 0.36
LIBSVC 0.59 0.52 0.37 0.32 0.27 0.28

109 patches NEURC 0.55 0.35 0.31 0.35 - 0.53
C2 incral44 +wax

PARZENC 0.65 0.45 0.65 0.45 0.67 0.67
LDC 0.46 0.43 0.38 0.41 - 0.67

KNNC 0.48 0.58 0.51 0.52 0.45 0.49
LIBSVC 0.45 0.66 0.43 0.40 0.37 0.43

102 patches NEURC 0.44 0.41 0.40 0.38 - 0.57
C3 wax + incral44 + wax

PARZENC 0.46 0.57 0.60 0.62 0.67 0.67

Table 3: Error of cross-validated (10-folds) classifiers (from top to bottom: naive Bayes, k-nearest neighbour, support vector machine,
neural network and parzen classifier) for aging prediction,performed on bronze samples with different coatings and based on classical
texture descriptors, neural net features and all the roughness parameters.

This behavior is maintained also by classifying with classical or
CNN based texture descriptors. In this case, however, the classifi-
cation of uncoated silver samples is quite accurate, with accuracy
up to 94% using CNN based methods and close to 90% with lo-
cal binary patterns (LBP). This means that it is possible to see that
there are measurable effects of aging on high resolution texture.

For the bronze samples, we again have better results for the un-
coated sample (see Table 3), meaning that there are measurable
changes reduced by the use of coatings, even if the results are
poorer.

It is clear that the results are not indicating a way to easily char-
acterize the age of a surface with texture analysis, as each sam-
ple/artworks has different background texture due to the specific
material treatment (brushing, polishing, etc.) that makes different
objects not comparable.

But, for example, the classification outcomes provide interest-
ing information about coatings’ effects. The silver resulting in the
highest overall classification error is C3 (one layer of acrylic plus
one layer of wax), followed by C2 (two layers of acrylic) and lastly
by C1 (one layer of acrylic). This suggests that for silver, the multi-
layered coatings protect more than the single-layered coatings.

The magnitude of difference in surface variation with aging be-
tween variously coated samples is lower for the bronze dataset than
it is for the silver dataset. Nonetheless, the most stable bronze coat-
ing over different aging steps is C1 (incral44), according to all de-
scriptors. On the other hand, it seems that the coating C2 with a
base layer of C1 (incrall44) and a top layer of wax has a higher ag-
ing discriminatory power. However, given the complex behaviour
and interplay between the different protective films, it is difficult

to assign the influence of each separate component in multi-coated
cases.

5. Discussion

The analysis of the degradation of artworks’ surfaces is a quite chal-
lenging task. In this paper we have shown that selected standard
roughness descriptors used in material science, applied to surface
geometry captured at a microscopic scale can reveal changes in the
surface of metals across simulated aging steps. However, even if an-
alyzed on a single metallic surface, only few roughness measure-
ments seems to be uniform in the sample and to characterize the
differences appearing in the artificial aging process. Furthermore,
the amount of descriptors’ changes decrease with time.

The differences in roughness seem to be better captured by clas-
sical or CNN based texture descriptors. This has been demonstrated
with supervised labelling tests. The combinations of local texture
descriptors and classifiers allow a reasonably successful classifica-
tion of time steps given example patches from the same surface at
the different time steps. This is not a pure overfitting effect, as it
can be shown that, when a coating is applied on the metallic sam-
ples, the ability of the method to discriminate time steps is reduced
or it disappears.

This means that the roughness analysis can be also exploited to
assess the effects of different coatings used to reduce aging effects.
Coatings actually makes aging differences in microgeometry less
evident and are more stable with time variation.

The fact that texture analysis can capture aging related features
suggests to further investigate the possibility of finding ways to
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model aging effects with image processing applied to micropro-
filometry data. A possible idea could be to learn the association
texture variations of patches with the related time interval.
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